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a b s t r a c t

MR sequences where two diffusion-weighting periods are applied successively in a single acquisition
seem to be a promising tool for the investigation of tissue structure on a microscopic level such as the
characterization of the compartment size or eccentricity measures of pores. However, the application
of such double-wave-vector (DWV) experiments on whole-body MR systems is hampered by the long
gradient pulses required that have been shown to reduce the signal modulation. In this work, it is dem-
onstrated that involving multiple concatenations of the two diffusion-weighting periods can ameliorate
this problem in experiments with long mixing times between the two wave vectors. The recently pre-
sented tensor equation is extended to multiple concatenations. As confirmed by Monte-Carlo simula-
tions, this model shows a good approximation of the signals observed for typical whole-body gradient
pulse durations and the derived anisotropy measures are obtained with good accuracy. Most importantly,
the signal modulation is increased with multiple concatenations because shorter gradient pulses can be
used to achieve the desired diffusion-weighting. Thus, the multiple concatenation approach may help to
improve the applicability and reliability of DWV measurements with long mixing times on standard
whole-body MR systems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In the past years, MR experiments involving two diffusion-
weighting periods which are applied successively in the same
acquisition have regained interest due to their sensitivity on tissue
structure at the microscopic level [1–3]. Because for short gradient
pulses a diffusion-weighting period is equivalent to a scatter event
[4] which can be characterized by a wave vector, the term two- or
double-wave-vector (DWV) diffusion-weighting has been used for
such experiments in contrast to standard, single-wave-vector
weighting [5]. Studies with DWV experiments at short mixing
times between the two wave vectors have been used for the esti-
mation of pore or compartment sizes [6–11].

In DWV experiments with long mixing times, the diffusion-
weighted signal of cells with an isotropic orientation distribution
is expected to differ between parallel and orthogonal wave vector
orientations for anisotropic pores or cells [3]. This microscopic diffu-
sion anisotropy effect that cannot be observed with standard single-
wave-vector experiments has been demonstrated experimentally in
a variety of samples [7,11–14], recently also on a whole-body MR
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system [15]. A tensor model based on the short-pulse approximation
was proposed which describes the signal behavior in the fourth or-
der of the wave vector amplitude q for arbitrary wave vectors, pores
sizes and orientation distributions [16]. This approach can be used to
derive rotationally invariant measures that characterize the micro-
scopic diffusion anisotropy [16]. But signal equation calculations
[17,18] as well as numerical simulations [19] performed for simple
pore shapes and general timing parameters demonstrated that finite
gradient pulse durations lead to a reduced modulation amplitude
which is expected to hamper its detectability on whole-body MR
systems.

In this work, multiple concatenations of the two wave vectors
[20] with long mixing times are investigated for timing parameters
compatible with whole-body MR systems. In the Theory part the
recently developed tensor approach with its microscopic anisotropy
measure MA [16] is extended to multiple concatenations. The
extended theory and the respective numerical simulations are in
good agreement for multiple concatenations for both, infinitesimal
short as well as typical whole-body gradient pulse durations. For
long gradient pulses, cell parameters and microscopic anisotropy
measures derived from the simulations show some deviations. Most
importantly, the signal modulation observed in experiments with
multiple concatenations is increased because shorter gradient
pulses can be used to achieve the desired diffusion-weighting. Thus,
the detectability of the microscopic anisotropy effect in the DWV
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experiment at long mixing times could be improved, in particular, on
whole-body MR systems.

2. Theory

In this section, the basic signal equations derived previously
[16] are extended to multiple concatenations. Note that the deriva-
tion will not be fully reproduced here, the reader is referred to ref.
[16] for a detailed synopsis. As for the simple DWV experiment, it
is assumed, that for multiple concatenations of the two wave vec-
tors (Fig. 1a) all pulse durations di are short (di ? 0) and the diffu-
sion times Di are large compared to sD (Di� sD) which is the time
a spin typically needs to diffuse across a pore, i.e. sD ¼ a2

2D with the
pore diameter a and the diffusion coefficient D. Furthermore, all
pulse durations and diffusion times as well as all mixing times
are set identical, i.e. dj = d, Dj = D, and sm,j = sm.

2.1. Multiple concatenations at long mixing times

The NMR signal M for fully restricted diffusion in isolated pores
or cells observed in a DWV diffusion-weighting experiment with
wave vectors q1 and q2 was first evaluated by Mitra [3]. For the
case that the mixing time sm between the two wave vectors is large
compared to sD (sm� sD), he obtained
n
g2 g2g1 g1

τmτm
RF/Signal

Gradients
Δδ

a

b

Fig. 1. (a) Example of a basic pulse sequence for a double-wave-vector (DWV)
diffusion-weighting experiment with multiple concatenations of both wave vectors,
i.e. each wave vector is applied n times. In the sequence shown, the two wave
vectors alternate but it should be emphasized that the theoretical framework
provided holds for any order and number of applications of the two diffusion-
weighting periods. Note also that the important feature, two diffusion-weighting
periods applied successively in a single experiment, can be realized with various
pulse sequences and is not limited to the preparation shown here. (b) Polar plot of
the wave vector directions used in the ‘‘isotropic” schema for the first (+, red) and
second (�, blue) wave vector. The circles (black, dashed) represent azimuth angles
of 90�, 180�, 270�, and 360� (from inner to outer). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
Mðq1;q2Þ /
XN

j¼1

j~qjðq1Þj
2j~qjðq2Þj

2 ð1Þ

where ~qjðqÞ is the Fourier transformation of the spin density distri-
bution qj in pore j

~qjðqÞ ¼
Z

pore j
qjðrÞeiqr dr: ð2Þ

To simplify the following equations, the pore index is dropped.
For an ensemble of identical pores or cells with a single orien-

tation under the application of multiple concatenations, the signal
is given by [20]

Mðn1;n2;q1;q2Þ / j~qðq1Þj
2n1 j~qðq2Þj

2n2 ð3Þ

where n1 and n2 denote how often each wave vector appears. Note
that Eq. (3) holds for any n1 and n2 and that it is independent of the
order in which the individual wave vectors are applied [20]. How-
ever, in the presented simulations, only setups with alternating
wave vectors (Fig. 1a) are considered.

2.2. Taylor expansion

Part of the expansion of Eq. (3) to fourth order has been shown
previously [16] based on the expansion of ~q to the same order:
Using the rank-2 (3 � 3) tensor R and defining a rank-4
(3 � 3 � 3 � 3) tensor S with elements

Rjk ¼
Z

pore
qðrÞrjrk dr

Sjklm ¼
Z

pore
qðrÞrjrkrlrm dr;

ð4Þ

~q can be re-written to

~qðqÞ ¼ 1� 1
2

qT Rq� i
6

X3

j;k;l¼1

qjqkql

Z
pore

qðrÞrjrkrl dr

þ 1
24

X3

j;k;l;m¼1

qjqkqlqmSjklm þ Oðq5Þ: ð5Þ

This yields

~qðqÞn ¼ 1� n
2

qT Rq� in
6

X3

j;k;l¼1

qjqkql

Z
pore

qðrÞrjrkrl dr

þ nðn� 1Þ
8

qT Rq
� �2

þ n
24

X3

j;k;l;m¼1

qjqkqlqmSjklm þ Oðq5Þ: ð6Þ

Using these results, the Taylor expansion of j~qðqÞj2n can be calcu-
lated to

j~qðqÞj2n ¼ ~qðqÞn ~q�ðqÞn

¼ 1� nqT Rqþ n2

4
ðqT RqÞ2 þ n

12

X3

j;k;l;m¼1

qjqkqlqmSjklm

þ nðn� 1Þ
4

ðqT RqÞ2 þ Oðq6Þ: ð7Þ

Note that the imaginary third order term of Eq. (5) only contributes
to sixth order terms which are neglected here.

Thus, the expansion of Eq. (3) up to fourth order yields

Mðn1;n2;q1;q2Þ / 1�
X2

m¼1

nmqT
mRqm þ

1
4

X2

m¼1

ð2nm � 1ÞnmðqT
mRqmÞ

2

þ n1n2 qT
1Rq1

� �
ðqT

2Rq2Þ

þ 1
12

X2

m¼1

X3

j;k;l;m¼1

nmqm;jqm;kqm;lqm;mSjklm þ Oðq6Þ ð8Þ
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where qm,j represents the jth component of wave vector qm. It should
be kept in mind that sm� sD is assumed for the derivation of Eq. (8).

Although Eq. (8) is already the desired general signal equation
for multiple concatenations, a different notation is used which al-
lows for a more convenient treatment of the fourth order terms.

2.3. Modified Voigt notation

The modified Voigt notation [21] can be applied for a further
simplification of Eq. (8). With the help of a six element vector ~q
with

~q ¼ q2
1; q

2
2; q

2
3; q1q2; q1q3; q2q3

� �T ð9Þ

for each wave vector qm and defining the matrices

eS ¼
S1111 S1122 S1133 2S1112 2S1113 2S1123

S1122 S2222 S2233 2S1222 2S1223 2S2223

S1133 S2233 S3333 2S1233 2S1333 2S2333

2S1112 2S1222 2S1233 4S1122 4S1123 4S1223

2S1113 2S1223 2S1333 4S1123 4S1133 4S1233

2S1123 2S2223 2S2333 4S1223 4S1233 4S2233

0BBBBBBBB@

1CCCCCCCCA
ð10Þ

and

eR ¼
R2

11 R11R22 R11R33 2R11R12 2R11R13 2R11R23

R11R22 R2
22 R22R33 2R12R22 2R13R22 2R22R23

R11R33 R22R33 R2
33 2R12R33 2R13R33 2R23R33

2R11R12 2R12R22 2R12R33 4R2
12 4R12R13 4R12R23

2R11R13 2R13R22 2R13R33 4R12R13 4R2
13 4R13R23

2R11R23 2R22R23 2R23R33 4R12R23 4R13R23 4R2
23

0BBBBBBBBBB@

1CCCCCCCCCCA
;

ð11Þ

the terms of Eq. (8) can be re-written to

Mðn1;n2;q1;q2Þ / 1�
X2

m¼1

nmqT
mRqm þ

X2

m¼1

nm

4
ð2nm � 1Þ~qT

m
eR~qm

þ n1n2 ~qT
1
eR~q2 þ

1
12

X2

m¼1

nm~qT
m
eS~qm: ð12Þ
2.4. Tensor equation

With a conjunction of the four vectors qm and ~qm to two vectors
Q ¼ ðqT

1;q
T
2Þ

T and eQ ¼ ~qT
1; ~q

T
2

� �T , respectively, and utilizing the
identity

n1n2 ~qT
1
eR~q2 ¼ n1n2 ~qT

2
eR~q1 ¼

n1n2

2
~qT

1
eR~q2 þ ~qT

2
eR~q1

� �
ð13Þ

the final tensor equation

Mðn1;n2;Q Þ / 1� 1
2

Q T Taðn1;n2ÞQ þ
1

12
eQ T eUðn1;n2Þ eQ ð14Þ

is obtained where the symmetric second order (6 � 6) tensor

Taðn1;n2Þ ¼
2n1R 0

0 2n2R

 !
ð15Þ

and the symmetric fourth order (12 � 12) tensor

eUðn1;n2Þ ¼
n1
eS þ ð3n1ð2n1 � 1ÞÞeR 6n1n2

eR
6n1n2

eR n2
~Sþ ð3n2ð2n2 � 1ÞÞeR

 !
;

ð16Þ

respectively, are included. For n1 = n2 = n, the tensor eUðn1;n2Þ can be
simplified to
eUðnÞ ¼ neS þ ð3nð2n� 1ÞÞeR 6n2 eR
6n2 eR neS þ ð3nð2n� 1ÞÞeR

 !
: ð17Þ

With Eq. (14), a general expression for the MR signal in a DWV
experiment with multiple concatenations at long mixing times
has been derived under the assumptions sm, D� sD and d ? 0. This
equation conveniently describes the desired generalized signal for
any wave vector direction and cell shape. For a mixture of different
pore ensembles, the equation remains valid if the weighted sums of
the individual ensembles are used as described previously [16].

2.5. Rotational invariant measures IMA and MA and isotropic
orientation distribution

It has been shown that the measures IMA and MA according to

IMA ¼
X3

k¼1

eRkk �
X3

k;l¼1
k<l

eRkl þ
3
4

X6

m¼4

eRmm

MA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

k¼1
eRkk �

X3
k;l¼1
k<l

eRkl þ
3
4

X6

m¼4
eRmm

s X3

k¼1
Rkk

. ð18Þ

are rotational invariants and reflect the diffusion anisotropy at the
microscopic level [16]. For multiple concatenations, n1 and n2 need
to be considered in the calculation of IMA on the basis of 15 mea-
sured signals according to

IMA ¼
1

n1n2

X3

k¼1

Mk;k �
X3

k;l¼1
k<l

Mk;l þ
3
2

X3

k;l¼1
k<l

1
2

Mkl;kl þ
1
2

Mk�l;k�l �Mkl;k�l

� �0B@
1CA:
ð19Þ

Here, Mk,l is the signal obtained for the two wave vectors along the
axes ek and el, Mij,kl that one obtained for the two wave vectors
along the diagonals ei + ej and ek + el. k�l describes the diagonal
ek � el. Thus, Eq. (19) demonstrates that 15 measurements (or sim-
ulations) with different wave vector direction combinations are re-
quired to determine IMA and the microscopic anisotropy MA [16].

Furthermore, the special case of a pore ensemble with an isotro-
pic orientation distribution of identical cells is considered. The cal-
culation given in the Appendix is straightforward and follows the
way presented earlier [16]. Most notably, the signal damping in
the second order depends linearly on n and the amplitude of the
modulation is proportional to n2ðhR2

kki � hRkkRlliÞ, i.e. to the square
of n MA (see Appendix).

3. Experimental

Monte-Carlo simulations were performed to establish the de-
rived tensor equation for multiple concatenations. The self-written
IDL algorithm (version 7.0, ITT Visual Information Solutions, Boul-
der, USA) described previously [22] was extended to account for
multiple concatenations. Starting for each spin with a random po-
sition within the pore volume, the spins performed a random,
Gaussian displacement in a random direction in every time unit
dt = 10 ls. At the pore boundaries, diffuse reflection was assumed.
Identical wave vector amplitudes were used for both wave vectors
(jqmj = q) in each simulation, possible relaxation effects were ne-
glected. For every simulation a pool of 10,000 spins was investi-
gated. As pore population, parallel oriented and isotropically
distributed spheroidal pores with radii of 1.5 lm, 1.5 lm, and
5.0 lm were used. Relaxation effects were neglected.

Three different direction schemes were used for the orienta-
tions of the two wave vectors to investigate different aspects of
the theoretical considerations: (i) the ‘‘isotropic” schema, (ii) the
‘‘tensor” schema and (iii) the ‘‘anisotropy” schema (compare ref.
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Fig. 2. Simulated MR signals (symbols) and fits to the tensor equation (lines)
obtained for short (10 ls) gradient pulses and parallel oriented ellipsoidal pores
with semi-axes of 1.5, 1.5, and 5.0 lm with (a) the isotropic, (b) the tensor and (c)
the anisotropy direction scheme. In all plots, the x-axis represents the index of the
wave vector orientation combination. In (a), only a subset covering 500 wave vector
combinations (x-axis) is plotted where each data point represents the signal
obtained for a certain combination of the wave vector orientations. The two data
sets shown were simulated for n = 1 (+, red) and n = 5 (�, blue). The solid lines
represent the fit of all (more than 5.45 million) combinations to Eq. (14). In (b) and
(c) the MR signal covering 45 and 15 wave vector combinations (x-axis) was
simulated with n varied from one to five. For all simulations a fixed nq2 of 0.06 m�2

was used. Note that all plots cover not only different absolute wave vector
orientations but also different relative angles between the two wave vetors. For
details see text. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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[16]). In the isotropic schema, the directions of both wave vectors
(1651 for the first and 3302 for the second wave vector) were uni-
formly distributed over a sphere (Fig. 1b). Those for the first wave
vector were obtained by considering 36 circles of latitude in steps
of 5�. On each circle, equidistant directions were defined with a
number of directions proportional to the circle’s circumference
with a maximum number of 72 on the equator (corresponding to
a seperation of 5�) yielding the 1651 directions for the first wave
vector. By including the antipode for each of these directions, the
3302 directions for the second wave vector were obtained. In the
simulations, each direction combination of the two wave vectors
was investigated, i.e. a total number of 1651 � 3302 � 5.45 million
different combinations was considered. The simulation results can
then either be fitted to Eq. (14) to obtain the 42 tensor elements if
all direction combinations are considered individually or to Eq.
(A.8) to estimate the microscopic anisotropy if an isotropic orienta-
tion distribution is mimicked by averaging all wave vector combi-
nations enclosing the same angle h [16].

The tensor and anisotropy direction schemes were derived from
nine directions covering the three directions along the coordinate
axes, (100)T, (010)T, and (001)T, and the six planar diagonals
(110)T, (1�10)T, (101)T, (10�1)T, (011)T, and (01�1)T. The tensor
scheme consisted of all 45 order-indendent combinations of these
nine directions and is expected to be sufficient to derive the full
tensor information, i.e. all 42 independent tensor elements [16].
The anisotropy scheme is a subset of 15 combinations originating
from the tensor scheme and represents the minimum number of
combinations from which the microscopic anisotropy information
can be derived. It can be calculated according to Eq. (19) [16], i.e.
the 15 different signal terms appearing in this equation define
the 15 direction combinations used in the anisotropy scheme. All
data were fitted with a Levenberg–Marquardt algorithm.

All mixing times sm,j and all diffusion times Dj were set to an
equal length of 30 ms. For the diffusion coefficient 2.0 �
10�3 mm2 s�1 was used. One to six concatenations in maximum
were used (see Fig. 1a). When comparing simulations with a differ-
ent number of concatenations, the product nq2, i.e. the diffusion-
weighting, was kept constant to obtain a comparable signal decay.

In the first step, the validity of the extended tensor approach to
describe the MR signal in experiments with multiple concatena-
tions was confirmed. Therefore, the three schemes were applied
to the pore species (single pore orientation) under a variation of
the number of concatenations n for the shortest gradient pulse
duration possible (10 ls). In the second step, the effect of finite
pulses was studied using gradient amplitudes achievable on
whole-body MR systems. Again, a constant nq2 was used when
varying the number of concatenations n and realized by using
the same gradient amplitude but shortening d according to d / 1ffiffi

n
p

yielding pulse durations between 24 ms for n = 1 and 9.8 ms for
n = 6 concatenations. To study the detectability of the presented
approach in vivo, different gradient amplitudes achievable with
standard whole-body gradient coils (39 mT/m), cutting-edge
whole-body gradient systems (60 mT/m) [23,24], and a head gradi-
ent insert (78 mT/m) [25] were used in the simulations.

The deviations of the pore-size parameters or tensor elements
that were determined from the fits, i.e. from their nominal values
that can be calculated analytically, are given as a percentage. For
those parameters or elements that have a nominal value of zero,
the percentage is given relative to the non-vanishing nominal
parameter or element with the lowest absolute value.

4. Results

In Fig. 2, the simulation results for the ideal case of infinitesimal
short gradient durations are shown for the three wave vector sche-
mas used. For a single pore species of parallel ellipsoidal cells, the
MR signal curves show pronounced modulations with the wave
vector combination applied. Some minor signal deviation between
the different numbers of concatenations below 1% can be noticed
that similarly has been found earlier [16,22]. This may be caused
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Fig. 3. Simulated MR signals (symbols) and fits to the tensor equation (lines) obtained
for gradient pulse durations and gradient amplitudes (39 mT/m) achievable with
whole-body MR systems. nq2 was fixed (0.06 m�2) yielding gradient pulse durations d
between 24 ms (n = 1) and 9.8 ms (n = 6). The number of concatenations equals n = 1,
2 and 6 in Fig. 3a and one to six in (b) and (c), respectively. All data sets show an
increase of the signal modulation amplitude with increasing number of concatena-
tions (top to bottom). In all plots, the x-axis represents the index of the wave vector
orientation combination. Note that all plots cover not only different absolute wave
vector orientations but also different relative angles between the two wave vetors.
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by an influence of a not sufficiently long mixing time, by rounding
errors, or the hidden algorithm of the random number generator.

In Fig. 2a, a subset of the simulated MR data for the same pore spe-
cies is shown which was obtained with the isotropic direction
scheme. Each MR signal observed for a certain orientation combina-
tion of the two wave vectors relative to the orientation of the ellipsoi-
dal pore is represented by one data point. Although only a small range
of the over 5.4 million data points is shown, the fits to Eq. (14) based
on all data approximate the simulation very well; the underlying
pore-size parameters are in a good agreement with the nominal val-
ues with a maximum deviation of about 5% for all concatenations.
This demonstrates the feasibility of the extended tensor equation to
describe the signal for arbitrary pore and wave vector orientations
accurately even in the general case of multiple concatenations.

Because the signal behavior described by Eq. (14) requires 42
different parameters in general, the tensor direction scheme con-
taining 45 wave vector orientation combinations can be efficiently
used for a determination of all parameters describing the signal
behavior (see ref. [16] for details). Simulation results for the tensor
scheme on the ellipsoidal cells with a single pore orientation along
the x-axis are shown in Fig. 2b supplemented with the fits to the
tensor equation. The signal amplitudes accumulate at a few differ-
ent ‘‘levels” similar to the case without concatenations. Although
some deviations of the data are visible, the fits to the general ten-
sor equation for the different concatenations are in good agree-
ment with the simulated data and yield pore parameters that
differ by less than 1% between the different pore orientations
and are within 5% of the nominal values.

Fig. 2c shows the simulations obtained with the anisotropy
direction scheme. Here, the deviations are also minor and the fit
to the tensor equation yields the same results in the limits of the
accuracy as described before. Thus, the extended formalism includ-
ing multiple concatenations has the potential to describe the signal
reliably from a reasonable and realizable number of wave vector
orientation combinations.

For the second step, the simulations were repeated for the gradi-
ent amplitudes achievable with whole-body MR systems. The signal
curves obtained with the longer pulse lengths look very similar but
there are important differences compared to Fig. 2: The signal decay
as well as the modulation amplitude are considerably reduced. For
the standard experiment (n = 1) the maximum modulation ampli-
tude for the subset of the isotropic schema shown is reduced by a
factor of about four, for the longer pulses from 0.25 (Fig. 2a) to
0.06 (Fig. 3a). A similar decrease is observed for the other direction
schemas. As a consequence, the pore-size parameters derived from
the fits are underestimated by up to 80%. The anisotropy measure
MA obtained deviates from the nominal value by only about 25%.

With an increasing number of concatenations, a pronounced in-
crease of the signal modulation is visible for all direction schemas,
e.g. almost doubled to 0.12 for six concatenations in Fig. 3a. This
not only improves the detectability of the signal modulation but
also yields more accurate pore-size parameters that deviate by less
than 50% from the nominal values (Fig. 3b). Similarly, the anisot-
ropy measure MA can be determined with an accuracy of about
10% (n = 6, Fig. 3c).

Considering an isotropic distribution of the pores (Fig. 4) the sig-
nals show more deviation from the fits, in particular around parallel
and anti-parallel wave vector orientations. Most likely, this is due to
a remaining undersampling of the corresponding angles, i.e. the dis-
tribution of the wave vector combinations with these angles is not
perfectly isotropic. Nevertheless, the deviation from the fit was
found to be negligibly small (below 0.5%). As in Fig. 3, multiple con-
catenations improve the signal modulation amplitude, e.g. by a fac-
tor of about three for n = 6 compared to the standard experiment.
However, as can be seen in Fig. 3a, the absolute signal difference
between a parallel and an orthogonal combination of the two wave
vectors is small and may be difficult to detect on standard whole-
body MR systems even for six concatenations. Some improvement
could be achieved with a higher gradient amplitude (Fig. 4b) that
can be realized by using more than one physical gradient axis. For in-
stance, using the wave vector directions (110)T and (1�10)T still al-
lows to measure parallel and orthogonal orientations but increases
the effective gradient amplitude by a factor of

ffiffiffi
2
p

. A further
improvement is observed for 78 mT/m with a signal modulation of
1.9% for two concatenations and 3.9% for six concatenations. Such
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experiments could be performed with cutting-edge whole-body
gradient systems (60 mT/m) [23,24] using the more efficient wave
directions mentioned above or with dedicated gradient inserts
available from some manufactures, e.g. compare ref. [25].

5. Discussion

The extension of the double-wave-vector diffusion-weighting
experiment with long mixing times to multiple concatenations of
b

a

re
l. 

M
R

 s
ig

na
l

c

θ / °

re
l. 

M
R

 s
ig

na
l

re
l. 

M
R

 s
ig

na
l

θ / °

θ / °

n = 1
n = 2

n = 3
n = 4

n = 5
n = 6

Fig. 4. Simulated MR signals (symbols) for an isotropic orientation distribution of the
ellipsoidal pores (semi-axes 1.5, 1.5, and 5 lm) vs. the angle h between the two wave
vectors. One to six concatenations (see legend) were used, the lines represent the fits
to Eq. (A.8). A fixed nq2 was used in each subfigure yielding pulse durations between
24.0 ms (n = 1) and 9.8 ms (n = 6). Gradient amplitudes were varied between (a)
39 mT/m, (b) 55 mT/m, and (c) 78 mT/m, i.e. nq2 equals 0.06 m�2, 0.12 m�2, and
0.24 m�2, respectively.
the two diffusion-weighting periods was presented. The tensor ap-
proach derived previously for the simple experiment [16] has been
extended accordingly yielding an equation that describes the sig-
nal amplitude depending on the two wave vectors not only for
arbitrary cell or pore shapes and orientation distributions but also
for any number of concatenations. In the first part, it has been
demonstrated with numerical simulations of diffusion in ellipsoi-
dal pores that the derived equation yields a good fit and accurate
estimates of the pore parameters for short gradient pulses. In the
second step it could be shown, that the model fits the simulations
performed very well also for gradient pulse amplitudes and dura-
tions compatible with whole-body MR systems. Thereby, the signal
modulation amplitude is considerably reduced, in particular for the
simple experiments yielding pore-size parameters reduced by a
factor of up to five and MA values reduced by 25%. However, with
multiple concatenations the pore parameters can be obtained with
an improved accuracy, i.e. about 50% and only 10% deviation for the
pore-size parameters and the MA, respectively.

The observed underestimation of the pore-size parameters for
pulse durations compatible with whole-body MR systems is caused
by the violation of the short-pulse approximation underlying the
theoretical considerations. It is consistent with initial results ob-
tained with a multiple propagator approach introduced to calcu-
late the effect of finite pulse durations in ellipsoidal pores for the
simple DWV experiment [26]. Analogously, in numerical simula-
tions performed to investigate the anisotropy effect, a decrease of
the signal difference between parallel and orthogonal wave vector
orientations for long pulse durations has been reported, e.g. by
about 16% for 20 ms-pulses and larger pores (semi-axes 2.5, 2.5,
and 7.5 lm) [19]. A similar phenomenon was also observed for
the compartment size estimation with simple DWV experiments
employing a short mixing time sm [19]. Because the size estimates
were in good agreement with the real values for the short (10 ls)
gradient pulses, the effect of the finite diffusion and mixing time
(both 30 ms) seems to be marginal in the present simulations.

Compared to the pore-size parameters, the estimates MA are
much more reasonable, e.g. with an error of about 10% for a simu-
lation where the pore sizes are underestimated by about 50%. This
is a consequence of the fact that a systematic underestimation is
present in all directions, i.e. along the short axis as well as along
the long axis of the ellipsoids. Thus, the MA of the (under)estimated
pore is similar to that of the real pore. However, the deviation de-
pends on the pore size along the measured directions which intro-
duces a slight distorsion of the MA for the ellipsoidal pores
investigated.

It should be emphasized that the prolonged echo time, or more
general the longer sequence timing, for multiple concatenations is
accompagnied by increased relaxation-induced signal losses. Thus,
the improved relative signal modulation reported for multiple con-
catenations will not convert to an equivalently higher absolute sig-
nal modulation. In particular for a large number of concatenations,
the absolute modulation may even decrease. The trade-off be-
tween the reduced signal-to-noise and the increased relative signal
modulation is expected to depend not only on the sample’s relax-
ation times but also on the pore sizes present.

Despite the pronounced improvement for multiple concatena-
tions at the long gradient pulse durations required on whole-body
MR systems, the signal modulation amplitude may still be quite
small as has been demonstrated for an isotropic orientation distri-
bution. Thus, to improve the detectability more efficient direction
schemes may be required that use several physical gradient axes
simultaneously. A further enhancement of the modulation is ex-
pected for stronger gradient systems that are becoming more and
more available for whole-body MR systems, or head gradient in-
serts [23–25]. Both would allow to apply long mixing time DWV
experiments to human white matter in vivo which would be a
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particularly interesting target because an estimation of the micro-
scopic anisotropy may help to distinguish between fiber density
and fiber coherence in regions with low macroscopic diffusion
anisotropy. In this context, it should also be mentioned that a high-
er signal modulation may be expected for white matter fibers as
their pore-shape related anisotropy is more pronounced than in
the ellipsoidal pores investigated here.

6. Conclusions

The tensor model of double-wave-vector experiments with long
mixing times has been extended to multiple concatenations of the
two diffusion weighting periods and confirmed by numerical simu-
lations. The diffusion-weighting per wave vector can be reduced for
multiple concatenations which reduces the pulse durations that are
known to have an adverse effect on the signal modulation. Thus, not
only the detectability is improved by also the accuracy of the pore-
parameters derived in particular on whole-body MR systems.
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Appendix A

The tensors R and S derived depend on the pore orientation W.
To consider an isotropic orientation distribution an average over all
possible pore orientation needs to be performed yielding the effec-
tive tensors Riso and Siso which are given by [16]

eRiso ¼
1

15

hR2
kki hRkkRlli hRkkRlli 0 0 0

hRkkRlli hR2
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where R0W represents the tensor R for the pore orientation W
0

and

eSiso ¼
1

15
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with hSkkkki ¼ 3hR4i; hR4i ¼
R

r4dr, and hSkklli = hR4i. The signal contri-
bution related to eRiso in Eq. (14) yields
eQ T
3ð2n1 � 1Þn1

eR iso 6n1n2
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6n1n2
eRiso 3ð2n2 � 1Þn2

eR iso

0@ 1A
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In the case n1 = n2 = n, Eq. (A.4) reduces to

eQ T
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0@ 1A
eQ ¼ 1

5
hRkkRlliq4ð8n2 � 2nÞ þ 2

5
hR2

kliq4ðð6n2 � 2nÞ þ 2n2 cos 2hÞ:

ðA:5Þ

Thus, a dependency of the signal on the angle h between the two
wave vectors is obtained. The fourth order signal contribution re-
lated to eSiso can be written as

eQ T
n1
eSiso 0

0 n2
eSiso

0@ 1AeQ ¼ 3
5
hR4iq4ðn1 þ n2Þ: ðA:6Þ

In summary, the signal for an isotropic orientation distribution of
the cells and q1 = q2 = q is
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or, for n1 = n2 = n,
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The microscopic anisotropy MA then yields the common expression

MA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5
hR2
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1
5
hRkkRlli þ

3
5
hR2

kli
r

hR2i
.

ðA:9Þ

which is identical to the value obtained for the case without concat-
enations [16].

In the h-independent fourth order term of Eq. (A.9), hR4i only ap-
pears with a prefactor of n while hR2

kki has terms proportional to n
and n2. This means for instance, that upon an variation of the num-
ber of concatenations n at constant q, hR2

kki can be determined from
the fourth order signal contributions quadratic in n which in turn
allows to calculate hR4i from those linear in n.
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